-
tensorstore_demo.DimExpression.translate_to(
self, origins: collections.abc.Sequence[int | None] | int | None) -> DimExpression Translates the domains of the selected input dimensions to the specified origins without affecting the output range.
Examples
>>> transform = ts.IndexTransform(input_shape=[4, 5, 6], ... input_labels=['x', 'y', 'z']) >>> transform[ts.d['x', 'y'].translate_to[10, 20]] Rank 3 -> 3 index space transform: Input domain: 0: [10, 14) "x" 1: [20, 25) "y" 2: [0, 6) "z" Output index maps: out[0] = -10 + 1 * in[0] out[1] = -20 + 1 * in[1] out[2] = 0 + 1 * in[2] >>> transform[ts.d['x', 'y'].translate_to[10, None]] Rank 3 -> 3 index space transform: Input domain: 0: [10, 14) "x" 1: [0, 5) "y" 2: [0, 6) "z" Output index maps: out[0] = -10 + 1 * in[0] out[1] = 0 + 1 * in[1] out[2] = 0 + 1 * in[2] >>> transform[ts.d['x', 'y'].translate_to[10]] Rank 3 -> 3 index space transform: Input domain: 0: [10, 14) "x" 1: [10, 15) "y" 2: [0, 6) "z" Output index maps: out[0] = -10 + 1 * in[0] out[1] = -10 + 1 * in[1] out[2] = 0 + 1 * in[2]
The new dimension selection is the same as the prior dimension selection.
- Parameters:¶
- origins: collections.abc.Sequence[int | None] | int | None¶
The new origins for each of the selected dimensions. May also be a scalar, e.g.
5
, in which case the same origin is used for all selected dimensions. IfNone
is specified for a given dimension, the origin of that dimension remains unchanged.
- Returns:¶
Dimension expression with the translation operation added.
- Raises:¶
IndexError – If the number origins does not match the number of selected dimensions.
IndexError – If any of the selected dimensions has a lower bound of
-inf
.
Last update:
Dec 16, 2024