-
tensorstore_demo.DimExpression.label(
self, labels: str | collections.abc.Sequence[str]
) -> DimExpression Sets (or changes) the labels of the selected dimensions.
Examples
>>> ts.IndexTransform(3)[ts.d[0].label['x']] Rank 3 -> 3 index space transform: Input domain: 0: (-inf*, +inf*) "x" 1: (-inf*, +inf*) 2: (-inf*, +inf*) Output index maps: out[0] = 0 + 1 * in[0] out[1] = 0 + 1 * in[1] out[2] = 0 + 1 * in[2] >>> ts.IndexTransform(3)[ts.d[0, 2].label['x', 'z']] Rank 3 -> 3 index space transform: Input domain: 0: (-inf*, +inf*) "x" 1: (-inf*, +inf*) 2: (-inf*, +inf*) "z" Output index maps: out[0] = 0 + 1 * in[0] out[1] = 0 + 1 * in[1] out[2] = 0 + 1 * in[2] >>> ts.IndexTransform(3)[ts.d[:].label['x', 'y', 'z']] Rank 3 -> 3 index space transform: Input domain: 0: (-inf*, +inf*) "x" 1: (-inf*, +inf*) "y" 2: (-inf*, +inf*) "z" Output index maps: out[0] = 0 + 1 * in[0] out[1] = 0 + 1 * in[1] out[2] = 0 + 1 * in[2] >>> ts.IndexTransform(3)[ts.d[0, 1].label['x', 'y'].translate_by[2]] Rank 3 -> 3 index space transform: Input domain: 0: (-inf*, +inf*) "x" 1: (-inf*, +inf*) "y" 2: (-inf*, +inf*) Output index maps: out[0] = -2 + 1 * in[0] out[1] = -2 + 1 * in[1] out[2] = 0 + 1 * in[2]
The new dimension selection is the same as the prior dimension selection.
- Parameters:¶
- labels: str | collections.abc.Sequence[str]¶
Dimension labels for each selected dimension.
- Returns:¶
Dimension expression with the label operation added.
- Raises:¶
IndexError – If the number of labels does not match the number of selected dimensions, or if the resultant domain would have duplicate labels.
Last update:
Nov 16, 2024